libstdc++
regex_executor.tcc
1 // class template regex -*- C++ -*-
2 
3 // Copyright (C) 2013-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  * @file bits/regex_executor.tcc
27  * This is an internal header file, included by other library headers.
28  * Do not attempt to use it directly. @headername{regex}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace __detail
34 {
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36 
37  template<typename _BiIter, typename _Alloc, typename _TraitsT,
38  bool __dfs_mode>
39  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
40  _M_search()
41  {
42  if (_M_flags & regex_constants::match_continuous)
43  return _M_search_from_first();
44  auto __cur = _M_begin;
45  do
46  {
47  _M_current = __cur;
48  if (_M_main<false>())
49  return true;
50  }
51  // Continue when __cur == _M_end
52  while (__cur++ != _M_end);
53  return false;
54  }
55 
56  // This function operates in different modes, DFS mode or BFS mode, indicated
57  // by template parameter __dfs_mode. See _M_main for details.
58  //
59  // ------------------------------------------------------------
60  //
61  // DFS mode:
62  //
63  // It applies a Depth-First-Search (aka backtracking) on given NFA and input
64  // string.
65  // At the very beginning the executor stands in the start state, then it tries
66  // every possible state transition in current state recursively. Some state
67  // transitions consume input string, say, a single-char-matcher or a
68  // back-reference matcher; some don't, like assertion or other anchor nodes.
69  // When the input is exhausted and/or the current state is an accepting state,
70  // the whole executor returns true.
71  //
72  // TODO: This approach is exponentially slow for certain input.
73  // Try to compile the NFA to a DFA.
74  //
75  // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
76  // Space complexity: \theta(match_results.size() + match_length)
77  //
78  // ------------------------------------------------------------
79  //
80  // BFS mode:
81  //
82  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
83  // explained this algorithm clearly.
84  //
85  // It first computes epsilon closure (states that can be achieved without
86  // consuming characters) for every state that's still matching,
87  // using the same DFS algorithm, but doesn't re-enter states (find a true in
88  // _M_visited), nor follows _S_opcode_match.
89  //
90  // Then apply DFS using every _S_opcode_match (in _M_match_queue) as the start
91  // state.
92  //
93  // It significantly reduces potential duplicate states, so has a better
94  // upper bound; but it requires more overhead.
95  //
96  // Time complexity: \Omega(match_length * match_results.size())
97  // O(match_length * _M_nfa.size() * match_results.size())
98  // Space complexity: \Omega(_M_nfa.size() + match_results.size())
99  // O(_M_nfa.size() * match_results.size())
100  template<typename _BiIter, typename _Alloc, typename _TraitsT,
101  bool __dfs_mode>
102  template<bool __match_mode>
103  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
104  _M_main()
105  {
106  if (__dfs_mode)
107  {
108  _M_has_sol = false;
109  _M_cur_results = _M_results;
110  _M_dfs<__match_mode>(_M_start_state);
111  return _M_has_sol;
112  }
113  else
114  {
115  _M_match_queue->push_back(make_pair(_M_start_state, _M_results));
116  bool __ret = false;
117  while (1)
118  {
119  _M_has_sol = false;
120  if (_M_match_queue->empty())
121  break;
122  _M_visited->assign(_M_visited->size(), false);
123  auto __old_queue = std::move(*_M_match_queue);
124  for (auto& __task : __old_queue)
125  {
126  _M_cur_results = std::move(__task.second);
127  _M_dfs<__match_mode>(__task.first);
128  }
129  if (!__match_mode)
130  __ret |= _M_has_sol;
131  if (_M_current == _M_end)
132  break;
133  ++_M_current;
134  }
135  if (__match_mode)
136  __ret = _M_has_sol;
137  return __ret;
138  }
139  }
140 
141  // Return whether now match the given sub-NFA.
142  template<typename _BiIter, typename _Alloc, typename _TraitsT,
143  bool __dfs_mode>
144  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
145  _M_lookahead(_State<_TraitsT> __state)
146  {
147  _ResultsVec __what(_M_cur_results.size());
148  auto __sub = std::unique_ptr<_Executor>(new _Executor(_M_current,
149  _M_end,
150  __what,
151  _M_re,
152  _M_flags));
153  __sub->_M_start_state = __state._M_alt;
154  if (__sub->_M_search_from_first())
155  {
156  for (size_t __i = 0; __i < __what.size(); __i++)
157  if (__what[__i].matched)
158  _M_cur_results[__i] = __what[__i];
159  return true;
160  }
161  return false;
162  }
163 
164  // TODO: Use a function vector to dispatch, instead of using switch-case.
165  template<typename _BiIter, typename _Alloc, typename _TraitsT,
166  bool __dfs_mode>
167  template<bool __match_mode>
168  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
169  _M_dfs(_StateIdT __i)
170  {
171  if (!__dfs_mode)
172  {
173  if ((*_M_visited)[__i])
174  return;
175  (*_M_visited)[__i] = true;
176  }
177 
178  const auto& __state = _M_nfa[__i];
179  // Every change on _M_cur_results and _M_current will be rolled back after
180  // finishing the recursion step.
181  switch (__state._M_opcode)
182  {
183  // _M_alt branch is "match once more", while _M_next is "get me out
184  // of this quantifier". Executing _M_next first or _M_alt first don't
185  // mean the same thing, and we need to choose the correct order under
186  // given greedy mode.
187  case _S_opcode_alternative:
188  // Greedy.
189  if (!__state._M_neg)
190  {
191  // "Once more" is preferred in greedy mode.
192  _M_dfs<__match_mode>(__state._M_alt);
193  // If it's DFS executor and already accepted, we're done.
194  if (!__dfs_mode || !_M_has_sol)
195  _M_dfs<__match_mode>(__state._M_next);
196  }
197  else // Non-greedy mode
198  {
199  if (__dfs_mode)
200  {
201  // vice-versa.
202  _M_dfs<__match_mode>(__state._M_next);
203  if (!_M_has_sol)
204  _M_dfs<__match_mode>(__state._M_alt);
205  }
206  else
207  {
208  // DON'T attempt anything, because there's already another
209  // state with higher priority accepted. This state cannot be
210  // better by attempting its next node.
211  if (!_M_has_sol)
212  {
213  _M_dfs<__match_mode>(__state._M_next);
214  // DON'T attempt anything if it's already accepted. An
215  // accepted state *must* be better than a solution that
216  // matches a non-greedy quantifier one more time.
217  if (!_M_has_sol)
218  _M_dfs<__match_mode>(__state._M_alt);
219  }
220  }
221  }
222  break;
223  case _S_opcode_subexpr_begin:
224  // If there's nothing changed since last visit, do NOT continue.
225  // This prevents the executor from get into infinite loop when using
226  // "()*" to match "".
227  if (!_M_cur_results[__state._M_subexpr].matched
228  || _M_cur_results[__state._M_subexpr].first != _M_current)
229  {
230  auto& __res = _M_cur_results[__state._M_subexpr];
231  auto __back = __res.first;
232  __res.first = _M_current;
233  _M_dfs<__match_mode>(__state._M_next);
234  __res.first = __back;
235  }
236  break;
237  case _S_opcode_subexpr_end:
238  if (_M_cur_results[__state._M_subexpr].second != _M_current
239  || _M_cur_results[__state._M_subexpr].matched != true)
240  {
241  auto& __res = _M_cur_results[__state._M_subexpr];
242  auto __back = __res;
243  __res.second = _M_current;
244  __res.matched = true;
245  _M_dfs<__match_mode>(__state._M_next);
246  __res = __back;
247  }
248  else
249  _M_dfs<__match_mode>(__state._M_next);
250  break;
251  case _S_opcode_line_begin_assertion:
252  if (_M_at_begin())
253  _M_dfs<__match_mode>(__state._M_next);
254  break;
255  case _S_opcode_line_end_assertion:
256  if (_M_at_end())
257  _M_dfs<__match_mode>(__state._M_next);
258  break;
259  case _S_opcode_word_boundary:
260  if (_M_word_boundary(__state) == !__state._M_neg)
261  _M_dfs<__match_mode>(__state._M_next);
262  break;
263  // Here __state._M_alt offers a single start node for a sub-NFA.
264  // We recursively invoke our algorithm to match the sub-NFA.
265  case _S_opcode_subexpr_lookahead:
266  if (_M_lookahead(__state) == !__state._M_neg)
267  _M_dfs<__match_mode>(__state._M_next);
268  break;
269  case _S_opcode_match:
270  if (_M_current == _M_end)
271  break;
272  if (__dfs_mode)
273  {
274  if (__state._M_matches(*_M_current))
275  {
276  ++_M_current;
277  _M_dfs<__match_mode>(__state._M_next);
278  --_M_current;
279  }
280  }
281  else
282  if (__state._M_matches(*_M_current))
283  _M_match_queue->push_back(make_pair(__state._M_next,
284  _M_cur_results));
285  break;
286  // First fetch the matched result from _M_cur_results as __submatch;
287  // then compare it with
288  // (_M_current, _M_current + (__submatch.second - __submatch.first)).
289  // If matched, keep going; else just return and try another state.
290  case _S_opcode_backref:
291  {
292  _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
293  auto& __submatch = _M_cur_results[__state._M_backref_index];
294  if (!__submatch.matched)
295  break;
296  auto __last = _M_current;
297  for (auto __tmp = __submatch.first;
298  __last != _M_end && __tmp != __submatch.second;
299  ++__tmp)
300  ++__last;
301  if (_M_re._M_traits.transform(__submatch.first,
302  __submatch.second)
303  == _M_re._M_traits.transform(_M_current, __last))
304  {
305  if (__last != _M_current)
306  {
307  auto __backup = _M_current;
308  _M_current = __last;
309  _M_dfs<__match_mode>(__state._M_next);
310  _M_current = __backup;
311  }
312  else
313  _M_dfs<__match_mode>(__state._M_next);
314  }
315  }
316  break;
317  case _S_opcode_accept:
318  if (__dfs_mode)
319  {
320  _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
321  if (__match_mode)
322  _M_has_sol = _M_current == _M_end;
323  else
324  _M_has_sol = true;
325  if (_M_current == _M_begin
326  && (_M_flags & regex_constants::match_not_null))
327  _M_has_sol = false;
328  if (_M_has_sol)
329  _M_results = _M_cur_results;
330  }
331  else
332  {
333  if (_M_current == _M_begin
334  && (_M_flags & regex_constants::match_not_null))
335  break;
336  if (!__match_mode || _M_current == _M_end)
337  if (!_M_has_sol)
338  {
339  _M_has_sol = true;
340  _M_results = _M_cur_results;
341  }
342  }
343  break;
344  default:
345  _GLIBCXX_DEBUG_ASSERT(false);
346  }
347  }
348 
349  // Return whether now is at some word boundary.
350  template<typename _BiIter, typename _Alloc, typename _TraitsT,
351  bool __dfs_mode>
352  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
353  _M_word_boundary(_State<_TraitsT> __state) const
354  {
355  bool __left_is_word = false;
356  if (_M_current != _M_begin
357  || (_M_flags & regex_constants::match_prev_avail))
358  {
359  auto __prev = _M_current;
360  if (_M_is_word(*std::prev(__prev)))
361  __left_is_word = true;
362  }
363  bool __right_is_word =
364  _M_current != _M_end && _M_is_word(*_M_current);
365 
366  if (__left_is_word == __right_is_word)
367  return false;
368  if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
369  return true;
370  if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
371  return true;
372  return false;
373  }
374 
375 _GLIBCXX_END_NAMESPACE_VERSION
376 } // namespace __detail
377 } // namespace