1 // class template regex -*- C++ -*-
 
    3 // Copyright (C) 2013-2014 Free Software Foundation, Inc.
 
    5 // This file is part of the GNU ISO C++ Library.  This library is free
 
    6 // software; you can redistribute it and/or modify it under the
 
    7 // terms of the GNU General Public License as published by the
 
    8 // Free Software Foundation; either version 3, or (at your option)
 
   11 // This library is distributed in the hope that it will be useful,
 
   12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
 
   13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
   14 // GNU General Public License for more details.
 
   16 // Under Section 7 of GPL version 3, you are granted additional
 
   17 // permissions described in the GCC Runtime Library Exception, version
 
   18 // 3.1, as published by the Free Software Foundation.
 
   20 // You should have received a copy of the GNU General Public License and
 
   21 // a copy of the GCC Runtime Library Exception along with this program;
 
   22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 
   23 // <http://www.gnu.org/licenses/>.
 
   26  *  @file bits/regex_executor.tcc
 
   27  *  This is an internal header file, included by other library headers.
 
   28  *  Do not attempt to use it directly. @headername{regex}
 
   31 namespace std _GLIBCXX_VISIBILITY(default)
 
   35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
 
   37   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 
   39     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 
   42       if (_M_flags & regex_constants::match_continuous)
 
   43    return _M_search_from_first();
 
   44       auto __cur = _M_begin;
 
   51       // Continue when __cur == _M_end
 
   52       while (__cur++ != _M_end);
 
   56   // This function operates in different modes, DFS mode or BFS mode, indicated
 
   57   // by template parameter __dfs_mode. See _M_main for details.
 
   59   // ------------------------------------------------------------
 
   63   // It applies a Depth-First-Search (aka backtracking) on given NFA and input
 
   65   // At the very beginning the executor stands in the start state, then it tries
 
   66   // every possible state transition in current state recursively. Some state
 
   67   // transitions consume input string, say, a single-char-matcher or a
 
   68   // back-reference matcher; some don't, like assertion or other anchor nodes.
 
   69   // When the input is exhausted and/or the current state is an accepting state,
 
   70   // the whole executor returns true.
 
   72   // TODO: This approach is exponentially slow for certain input.
 
   73   //       Try to compile the NFA to a DFA.
 
   75   // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
 
   76   // Space complexity: \theta(match_results.size() + match_length)
 
   78   // ------------------------------------------------------------
 
   82   // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
 
   83   // explained this algorithm clearly.
 
   85   // It first computes epsilon closure (states that can be achieved without
 
   86   // consuming characters) for every state that's still matching,
 
   87   // using the same DFS algorithm, but doesn't re-enter states (find a true in
 
   88   // _M_visited), nor follows _S_opcode_match.
 
   90   // Then apply DFS using every _S_opcode_match (in _M_match_queue) as the start
 
   93   // It significantly reduces potential duplicate states, so has a better
 
   94   // upper bound; but it requires more overhead.
 
   96   // Time complexity: \Omega(match_length * match_results.size())
 
   97   //                  O(match_length * _M_nfa.size() * match_results.size())
 
   98   // Space complexity: \Omega(_M_nfa.size() + match_results.size())
 
   99   //                   O(_M_nfa.size() * match_results.size())
 
  100   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 
  102   template<bool __match_mode>
 
  103     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 
  109      _M_cur_results = _M_results;
 
  110      _M_dfs<__match_mode>(_M_start_state);
 
  115      _M_match_queue->push_back(make_pair(_M_start_state, _M_results));
 
  120          if (_M_match_queue->empty())
 
  122          _M_visited->assign(_M_visited->size(), false);
 
  123          auto __old_queue = std::move(*_M_match_queue);
 
  124          for (auto& __task : __old_queue)
 
  126          _M_cur_results = std::move(__task.second);
 
  127          _M_dfs<__match_mode>(__task.first);
 
  131          if (_M_current == _M_end)
 
  141   // Return whether now match the given sub-NFA.
 
  142   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 
  144     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 
  145     _M_lookahead(_State<_TraitsT> __state)
 
  147       _ResultsVec __what(_M_cur_results.size());
 
  148       auto __sub = std::unique_ptr<_Executor>(new _Executor(_M_current,
 
  153       __sub->_M_start_state = __state._M_alt;
 
  154       if (__sub->_M_search_from_first())
 
  156      for (size_t __i = 0; __i < __what.size(); __i++)
 
  157        if (__what[__i].matched)
 
  158          _M_cur_results[__i] = __what[__i];
 
  164   // TODO: Use a function vector to dispatch, instead of using switch-case.
 
  165   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 
  167   template<bool __match_mode>
 
  168     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 
  169     _M_dfs(_StateIdT __i)
 
  173      if ((*_M_visited)[__i])
 
  175      (*_M_visited)[__i] = true;
 
  178       const auto& __state = _M_nfa[__i];
 
  179       // Every change on _M_cur_results and _M_current will be rolled back after
 
  180       // finishing the recursion step.
 
  181       switch (__state._M_opcode)
 
  183    // _M_alt branch is "match once more", while _M_next is "get me out
 
  184    // of this quantifier". Executing _M_next first or _M_alt first don't
 
  185    // mean the same thing, and we need to choose the correct order under
 
  186    // given greedy mode.
 
  187    case _S_opcode_alternative:
 
  191          // "Once more" is preferred in greedy mode.
 
  192          _M_dfs<__match_mode>(__state._M_alt);
 
  193          // If it's DFS executor and already accepted, we're done.
 
  194          if (!__dfs_mode || !_M_has_sol)
 
  195        _M_dfs<__match_mode>(__state._M_next);
 
  197      else // Non-greedy mode
 
  202          _M_dfs<__match_mode>(__state._M_next);
 
  204            _M_dfs<__match_mode>(__state._M_alt);
 
  208          // DON'T attempt anything, because there's already another
 
  209          // state with higher priority accepted. This state cannot be
 
  210          // better by attempting its next node.
 
  213              _M_dfs<__match_mode>(__state._M_next);
 
  214              // DON'T attempt anything if it's already accepted. An
 
  215              // accepted state *must* be better than a solution that
 
  216              // matches a non-greedy quantifier one more time.
 
  218            _M_dfs<__match_mode>(__state._M_alt);
 
  223    case _S_opcode_subexpr_begin:
 
  224      // If there's nothing changed since last visit, do NOT continue.
 
  225      // This prevents the executor from get into infinite loop when using
 
  226      // "()*" to match "".
 
  227      if (!_M_cur_results[__state._M_subexpr].matched
 
  228          || _M_cur_results[__state._M_subexpr].first != _M_current)
 
  230          auto& __res = _M_cur_results[__state._M_subexpr];
 
  231          auto __back = __res.first;
 
  232          __res.first = _M_current;
 
  233          _M_dfs<__match_mode>(__state._M_next);
 
  234          __res.first = __back;
 
  237    case _S_opcode_subexpr_end:
 
  238      if (_M_cur_results[__state._M_subexpr].second != _M_current
 
  239          || _M_cur_results[__state._M_subexpr].matched != true)
 
  241          auto& __res = _M_cur_results[__state._M_subexpr];
 
  243          __res.second = _M_current;
 
  244          __res.matched = true;
 
  245          _M_dfs<__match_mode>(__state._M_next);
 
  249        _M_dfs<__match_mode>(__state._M_next);
 
  251    case _S_opcode_line_begin_assertion:
 
  253        _M_dfs<__match_mode>(__state._M_next);
 
  255    case _S_opcode_line_end_assertion:
 
  257        _M_dfs<__match_mode>(__state._M_next);
 
  259    case _S_opcode_word_boundary:
 
  260      if (_M_word_boundary(__state) == !__state._M_neg)
 
  261        _M_dfs<__match_mode>(__state._M_next);
 
  263    // Here __state._M_alt offers a single start node for a sub-NFA.
 
  264    // We recursively invoke our algorithm to match the sub-NFA.
 
  265    case _S_opcode_subexpr_lookahead:
 
  266      if (_M_lookahead(__state) == !__state._M_neg)
 
  267        _M_dfs<__match_mode>(__state._M_next);
 
  269    case _S_opcode_match:
 
  270      if (_M_current == _M_end)
 
  274          if (__state._M_matches(*_M_current))
 
  277          _M_dfs<__match_mode>(__state._M_next);
 
  282        if (__state._M_matches(*_M_current))
 
  283          _M_match_queue->push_back(make_pair(__state._M_next,
 
  286    // First fetch the matched result from _M_cur_results as __submatch;
 
  287    // then compare it with
 
  288    // (_M_current, _M_current + (__submatch.second - __submatch.first)).
 
  289    // If matched, keep going; else just return and try another state.
 
  290    case _S_opcode_backref:
 
  292        _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
 
  293        auto& __submatch = _M_cur_results[__state._M_backref_index];
 
  294        if (!__submatch.matched)
 
  296        auto __last = _M_current;
 
  297        for (auto __tmp = __submatch.first;
 
  298         __last != _M_end && __tmp != __submatch.second;
 
  301        if (_M_re._M_traits.transform(__submatch.first,
 
  303        == _M_re._M_traits.transform(_M_current, __last))
 
  305        if (__last != _M_current)
 
  307            auto __backup = _M_current;
 
  309            _M_dfs<__match_mode>(__state._M_next);
 
  310            _M_current = __backup;
 
  313          _M_dfs<__match_mode>(__state._M_next);
 
  317    case _S_opcode_accept:
 
  320          _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
 
  322        _M_has_sol = _M_current == _M_end;
 
  325          if (_M_current == _M_begin
 
  326          && (_M_flags & regex_constants::match_not_null))
 
  329        _M_results = _M_cur_results;
 
  333          if (_M_current == _M_begin
 
  334          && (_M_flags & regex_constants::match_not_null))
 
  336          if (!__match_mode || _M_current == _M_end)
 
  340            _M_results = _M_cur_results;
 
  345      _GLIBCXX_DEBUG_ASSERT(false);
 
  349   // Return whether now is at some word boundary.
 
  350   template<typename _BiIter, typename _Alloc, typename _TraitsT,
 
  352     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
 
  353     _M_word_boundary(_State<_TraitsT> __state) const
 
  355       bool __left_is_word = false;
 
  356       if (_M_current != _M_begin
 
  357      || (_M_flags & regex_constants::match_prev_avail))
 
  359      auto __prev = _M_current;
 
  360      if (_M_is_word(*std::prev(__prev)))
 
  361        __left_is_word = true;
 
  363       bool __right_is_word =
 
  364    _M_current != _M_end && _M_is_word(*_M_current);
 
  366       if (__left_is_word == __right_is_word)
 
  368       if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
 
  370       if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
 
  375 _GLIBCXX_END_NAMESPACE_VERSION
 
  376 } // namespace __detail